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Abstraa--Proofs of the theorems of local volume averaging which relate averages of derivatives to 
derivatives of averages are presented. A distribution function whose derivatives are proportional to the Dirac 
delta function is used in the development and the proofs demonstrated are intended to be simpler than those 
found in the literature. 

INTRODUCTION 

The technique of local volume averaging of continuum equations of motion and transport has 
been shown by various authors (e.g. Whitaker 1967; Slattery 1967; Bear 1972; Gray & O'Neill 
1976) to be of value in obtaining equations applicable to multiphase systems. Whitaker (1966) 
showed that local surface averaging could be used to develop Darcy's law. This development, 
however, is severely complicated by notational conventions used to ensure consistency of the 
averaging process. Whitaker (1967) and Slattery (1967) were able to overcome the conceptual and 
notational difficulties of area averaging by volume averaging. For this process to lead to averaged 
equations which are useful, a theorem must be applied which relates the average of a spatial 
derivative of a function to the spatial derivative of the average of the function. Slattery (1967) and 
Whitaker (1969) developed this theorem by analogy with the transport theorem. Additional 
arguments concerning the derivative of an average and its physical significance were presented to 
complete the proof. Bachmat (1972) has developed a proof of the averaging theorem for spatial 
derivatives as well as for the time derivative. All the above proofs of the averaged theorems are 
conceptually very difficult. 

In this paper alternative proofs of the averaging theorems are presented. These proofs are 
intended to offer simpler derivations than reported previously and to clarify misconceptions that 
may arise concerning the assumptions and utility of the local averaging technique. 

DISTRIBUTION FUNCTION 

The purpose of subsequent discussion is to obtain averaging theorems appropriate for local 
averaging of flow and transport equations in porous media. To this end a function y~ is defined 
which has a value of unity in the a-phase but is zero in all other phases which will collectively be 
referred to as the fl-phase. For example, if equations for the fluid phase in saturated flow in a 
groundwater aquifer are to be obtained, that phase would be referred to as the a-phase while the 
solid matrix would form the/3-phase. In unsaturated flow, a might refer to the gas phase while 
the liquid and solid phases would together comprise the J3-phase. By allowing a to denote any of 
the phases present, averaged equations may be developed for that phase. 

A building block for the function ~ is the unit step function which in one dimension is defined 
by 

0, Xt < a 
H ( x t - a ) =  1, x,>-a. [1] 
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The derivative of this function is given by 

d H ( x ,  - a )  
d x ,  - 3 ( x ,  - a )  [21 

where ~(x~- a) is the Dirac delta function (Lighthill 1958). 

Now consider the function ~,~(x,) in figure la which is the sum of the step functions 

"y~(x,) = H ( x ,  - ao) - H ( x ,  - a , )  + H ( x ,  - a2) - H ( x ,  - a3) + H ( x ,  - a,). [3] 
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Figure 1. One-dimensional distribution function ~/~ (defined to be unity in the a-phase and zero in the 
/]-phase) and its derivatives. 

The derivative of this function with respect to x~ is a sum of Dirac delta functions 

dye(x,) = 3(Xl - ao) - 3(x, - a,) + 3(xl - a:) - ~(x, - a3) + 3(x, - a4) [41 
dxl 

and is plotted in figure lb. If a unit normal vector n~ is defined which points outward from the 

-phase to the/3-phase at the a-/3 interface, then [4] can be rewritten 

4 

d3~(x,)_ ~ n. • i3 (x t -ak)  [5] 
dxl k~o 

where i is a unit vector in the positive x, direction. 

A two-dimensional distribution, ~,~(x,, x2) is demonstrated in figure 2a. In this instance 

aVo (x,, x2) _ 
n~ • iS(x - x~),  [6a] 

3xl 

~3'o (x,, x~) _ n~- j3(x- x~) [6b] 
3x2 

where x is a position vector, and x. ,  is the position vector of the a - f l  interface. 

Plots of (03,~(x,,  x2)/Ox,)  and (a~,~(x,, x2)/dxz)  obtained with reference to figure 2a appear as 

figures 2b and c. Equations [6] can be re-expressed in vector notation as 

V* 3'(x,, x2) = -  n~8(x - x~)  [7] 

where 

V*=i~x  +j --3 0X2" 
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By analogy with [7], the gradient of a three-dimensional distribution function 7o(x,, x2, xs) 
[which also will be written as y~(x)] is 

Vxy~ (x) = - n ~ ( x  - x~B) [8] 

1.0 I 

\ / ~ _ _ 1 _ _ ~ _ _  / 

/ j ', 
/ . , J , , .  "~ (] - P H A S E  

X I X 2 

, i i ! - i f  ;:; ..:.~'~?. 
" " ' . 2 " :  

.:;..::..,..:.~ ?'."-"" 

Figure 2(a) 

./':} o 

"':~"f 
"'"! • s , i  ° ; . '  

.,...-/..ii 
• o. : ° . ° ~  

a-PHASE 
8X t 

X t X z 

.:.:.%.. 
:"7{: 

V 

Figure 2(b) 



336 W. G. GRAY and P. C. Y. LEE  

t 

:)if!!: 
• -,, . 

".').': .::. 
":.: :'-... .~ 

f,':.. 

Figure 2(c) 
Figure 2. Two-dimensional distribution function y. (defined to be unity in the a-phase and zero in the 

/3-phase) and its derivatives. 

where 

Vx =i-~-O +j~-O +k --~-O 
aXl aX2 aX3" 

It should be noted that for a medium in which the a-phase is deforming, % will be a function 
of time as well as space. 

DEFINITIONS FOR AVERAGING 

When applying averaging techniques to continuum equations for flow in porous media, it is 
necessary to select an averaging volume that will result in meaningful averages. Whitaker (1969) 
has shown that this condition can be met when the characteristic length of the averaging volume 
is much greater than the pore diameter in the medium but much less than the characteristic length 
of the medium. Additionally the shape, size, and orientation of the averaging volume will be 
required to be independent of space and time. 

For purposes of averaging, it is convenient to define a local co-ordinate system, ~,, ~2, ~3, 
which has axes parallel with the xt, x2, x3 system but whose origin is located at position x (figure 3). 
The location of the averaging volume with respect to the ~ co-ordinate system is independent of x. 
For example, the averaging volume may be defined such that its centroid always coincides with the 
origin of the ~ system. 

The phase average, (~) ,  of some property $ is now defined by 

(O~)(x, t) = V ~(x + ~, t)% (x + ~, t) d Ve [9] 

where the volume of integration, V = V, + Va, is independent of space and time. However V~ 
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Figure 3. Local averaging volume V containing both a- and #-phases. 

and V~ will depend on x and will also depend on t if the medium is deformable. Physically, the 
phase average is a property of the a-phase only averaged over the entire volume occupied by the 
a- and/3-phases in the averaging volume (e.g. specific discharge is the phase average of the fluid 
velocity). Because 3'~ is zero in the/3-phase, [9] can alternatively be written 

(~)(x, t )= 1 fvo,..,, ~(x + ~, t)dV, [10] 

but in this instance, the limits of integration depend on spatial location and on time if the medium 
deforms. 

The intrinsic phase average, (~)",  of some property ~ is given by 

(~o)"(x, t )= ~ f ~b(x+ ,, t)dV,. [ll] 
d v ~  (x, t) 

This type of average describes a property of the a-phase averaged over that phase only (e.g. the 
fluid velocity obtained by averaging the point fluid velocities over the volume occupied by the 
fluid is an intrinsic phase average). Comparison of [I0] and [11] indicates that 

<6~>(x, t)= ~(x, t)<~,~)~(x, t) [12] 

where 

E~(x, t) = V,,(x,t)/V=-~ ~/~(x + ~, t) d V~. [13] 

Thus Eo is the porosity or in the fraction of the medium occupied by the a-phase. 
Before proceeding to the averaging theorems, we shall examine a useful identity involving the 

gradient operator. For notational convenience the following conventions are adopted: 

J.M.F., Vol. 3, No. 4 ~  
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Vx refers to the gradient taken with respect to x coordinates holding ~, ~2, and ~3 constant; 
V~ refers to the gradient taken with respect to g coordinates holding xt, x2, and x3 constant; 
and 
V refers to either Vx or V~. 

These conventions will be used through the remainder of the paper. If a function is symmetrically 
dependent on x and ~ (that is dependent on x + ~ rather than x and 6) the gradient of that function 
in the x coordinate system is equal to its gradient in the 6 coordinate system. Therefore 

Vx~b(x + 6) = V~b(x + 6) = V0(x + 6), [14a] 

V~%(x + 6) = V~y~(x + 6) = V%(x + 6). [14b] 

AVERAGING THEOREMS 

The first theorem of interest relates the average of a gradient to the gradient of an average and 
was developed by Slattery (1967) and Whitaker (1967). If ~ is continuous within the a-phase, this 
theorem states that 

(VtP.) = V(~b.) + + f A 0~n. dA. [15] 
a0(x, t) 

This relation is easily proved using the function yo discussed previously. From [9], 

'L (v4J~) = V [v4J(x + 6, t)h,o(x + 6, t) dye. [16] 

Application of the chain rule to the terms on the R.H.S. of [16] yields 

(V~) = + fv V[~(x + ~, t),~(x + 6, t)] d V ~ - +  ~v 0(x+ 6, t)[Vy~(x + ~, t)] d V~. [17] 

Substitution of [8] into this equation yields 

__1 f 1 fvq,(x+6,t)n.8o(x+6_x~o,t)dV,. [181 

The last integral in [18] involves the delta function which is zero everywhere except at the a-/3 
phase interface. The value of an integral whose integrand is a 8-function multiplied by some other 
quantity is just that quantity evaluated at the singular points of the 84unction. Therefore 

l fv l fA ~Oo(x + 6, t)t~. dA, [19] "~ O(x+6, t)n~6~(x+6-x~o,t)dV~=-~ .,,..,, 
and [18] becomes 

(VqJ~) = + ~v V[t0(x + ,, t)y~(x + 6, t)] dV~ + 1 f,,~,t..,~n~ da. [20] 

If V on the R.H.S. of [20] is considered to be V~, it may be removed from the integral sign because 
the volume of integration has been specified to be independent of x. Thus one obtains 

1 (V q, o)= V~ [ + f, q,(x + 6, t)'~,o(x + 6, t) d V,] +-V fao,,..,)q,.n,, dA, [21] 
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or after making use of [9], 

which is the averaging theorem. 
If V on the R.H.S. of [20] is considered to be Vc then the divergence theorem may be applied 

to the integral and [ZO] becomes 

WI 

where I is the surface of the averaging volume, and n is an outward unit normal on I. 
Because -ye is zero where the surface of the averaging volume is in the p-phase and unity where 
this surface is in the a-phase, it is only necessary to integrate over I,, the portion of I in the 
a-phase, to evaluate the first integral on the R.H.S. of [23]. 

Thus [23] becomes 

[241 

Equating the R.H.S. of [22] and 1241, one obtains 

This relation has also been obtained by Slattery (1967) and Whitaker (1%9). 
The second theorem that will be considered relates the spatial average of a time derivative to 

the derivative of a spatial average. This theorem was used by Whitaker (1973) who considered it 
to be the transport theorem associated with a point fixed in space. From [9], the phase average of 
a time derivative is 

(x + 5, tMx + L 0 d V,. WI 

Application of the chain rule to the R.H.S. of [26] yields 

Because V is independent of time, the order of differentiation and integration in the first term on 
the right side may be reversed and [9f may be invoked to obtain 

1281 

If the a-phase is deforming, p will be a function of time and the last term in (281 may be 
non-zero. The total derivative of F with respect to time is 

~291 

Recall that (dy,/ax,), (ayti/axZ), and @,/a~~) will be non-zero only on the &I imface. If 
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(dx,/dt), (dx2ldt), and (dx3/dt) are chosen to be the velocity components of the interface, the total 
derivative becomes a substantial derivative that moves with the interface. Because an observer 
riding on the interracial boundary will see no change, this derivative is zero, or 

d?" = 0 = 0O-~t~ + w • VT, , 
dt 

[30] 

where w is the velocity of the phase interface. 
Thus 

07,= 
Ot - w ,  VT,, 

and substitution of this equality into [28] yields 

"~(0,) ~ fvO(x + g,t)w(x+ ~,t)" VT,(x + g,t) dVe • 

[311 

[321 

Identity [8] relates VTa to the 8-function and [19] indicates that the last term in [32] can be 
changed to an integral over the a-/3 phase interface. The final form of this equation is 

= ~t (~b~)-~ ~ w . L  dA, [33] 

which is a relationship between the spatial average of a time derivative and the time derivative of 
a spatial average. 

CONCLUSION 

Use of a distribution function defined to have a value of unity in a phase of interest and zero in 
all other phases has been shown to be very useful in proving theorems for local volume 
averaging. The spatial derivative of the distribution function defined in this manner is a 
three-dimensional form of the Dirac delta function. It has been demonstrated that this property of 
the distribution function is the source of the surface integrals over phase interfaces that arise in 
the relationship between averages of derivatives and derivatives of averages. 
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